Partitioning and Blocking Issues for a Parallel Incomplete Factorization
نویسندگان
چکیده
The purpose of this work is to provide a method which exploits the parallel blockwise algorithmic approach used in the framework of high performance sparse direct solvers in order to develop robust and efficient preconditioners based on a parallel incomplete factorization.
منابع مشابه
A Message-Passing Distributed Memory Parallel Algorithm for a Dual-Code Thin Layer, Parabolized Navier-Stokes Solver
In this study, the results of parallelization of a 3-D dual code (Thin Layer, Parabolized Navier-Stokes solver) for solving supersonic turbulent flow around body and wing-body combinations are presented. As a serial code, TLNS solver is very time consuming and takes a large part of memory due to the iterative and lengthy computations. Also for complicated geometries, an exceeding number of grid...
متن کاملIncomplete Inverse Preconditioners
Incomplete LU factorization is a valuable preconditioning approach for sparse iterative solvers. An “ideal” but inefficient preconditioner for the iterative solution of Ax = b is A−1 itself. This paper describes a preconditioner based on sparse approximations to partitioned representations of A−1, in addition to the results of implementation of the proposed method in a shared memory parallel en...
متن کاملA PERFORMANCE STUDY OF SPARSE CHOLESKY FACTORIZATION ON INTEL iPSC/860
The problem of Cholesky factorization of a sparse matrix has been very well investigated on sequential machines. A number of efficient codes exist for factorizing large unstructured sparse matrices, for example, codes from Harwell Subroutine Library [4] and Sparspak [7]. However, there is a lack of such efficient codes on parallel machines in general, and distributed memory machines in particul...
متن کاملEnhancing Performance and Robustness of ILU Preconditioners by Blocking and Selective Transposition
Incomplete factorization is one of the most effective general-purpose preconditioning methods for Krylov subspace solvers for large sparse systems of linear equations. Two techniques for enhancing the robustness and performance of incomplete LU factorization for sparse unsymmetric systems are described. A block incomplete factorization algorithm based on the Crout variation of LU factorization ...
متن کاملFine-Grained Parallel Incomplete LU Factorization
This paper presents a new fine-grained parallel algorithm for computing an incomplete LU factorization. All nonzeros in the incomplete factors can be computed in parallel and asynchronously, using one or more sweeps that iteratively improve the accuracy of the factorization. Unlike existing parallel algorithms, the new algorithm does not depend on reordering the matrix. Numerical tests show tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006